
International Journal Of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 583
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Fuzzy Pattern Matching Algorithm for Location
Based Approximate Strings

Anu Sebastian, Joby George

Abstract— String matching is a classical problem in computer science. The problem of string matching has been studied extensively due
to its wide range of applications from Internet searches to computational biology. Applications may require exact or approximate string
matching. There are many approximate pattern matching algorithms proposed in the literature. They mainly focus on solving the k-
mismatch problems and k-difference problems. K-mismatch problems find all occurrences of a short pattern in a long text string with at
most k mismatches. But these mismatches can be anywhere in the pattern. But in some applications it is essential to find the fuzzy
patterns varying only in some specific positions of the pattern. For example finding Transcription Factor Binding Site along the DNA is an
application of such type of fuzzy pattern matching. The paper proposes an approximate pattern matching algorithm that allows only position
based variation in the pattern. The algorithm can be used to determine the potential Transcription Factor Binding Sites along the DNA and
for similar applications.

 Index Terms— Algorithm for bioinformatics, pattern matching, fuzzy pattern matching, position specific approximate pattern matching,
Transcription Factors, Transcription Factor Binding Site, Boyer–Moore algorithm.

—————————— ——————————

1 INTRODUCTION

tring matching is a technique to discover pattern from the
specified input string. It is the problem of finding all valid
shift with which a pattern P occurs in text T[1]. The prob-

lem of string matching has been studied extensively due to its
wide range of applications from Text editors in computing
machines, Database queries, network intrusion detections sys-
tem, Bioinformatics and Cheminformatics, wide window pat-
tern matching, music content retrievals, MS-word spell check-
er, matching DNA sequences, language syntax checker, digi-
tal libraries, search engines and many more. In string match-
ing approximate pattern matching is considered as a challeng-
ing problem. It is a recurrent problem which is applied in text
searching, pattern recognition, computational biology and
signal processing applications [13]. Approximate pattern
matching is also called fuzzy pattern matching.

 Approximate pattern matching operations usually consume
a huge amount of computational resources. K-mismatch prob-
lem and the k-diff erence problem are the main two variations
of the approximate pattern matching problem. In both the
problems, a short pattern string P = p1p2···pm and a long text
string T = t1t2t3···tn over an alphabet Σ, and an integer k are
given. The Σ may be a typical human alphabet like the letters
A through Z. In some applications binary alphabet Σ = {0,1} or
DNA alphabet Σ = {A,C,G,T} are also used. The k-mismatch

problem is to find out every occurrences of P (pattern) in T
(text) with at most k mismatches permitted. Whereas the k-
diff erence problem finds all substrings of T (text) with edit
distance at most k to P (pattern). In literature there are many
algorithms to solve these problems.

 The naive algorithm calculates the Hamming distance for
every alignment of the pattern P in the text T in time O(nm)
for string matching with mismatches, The motivation for ap-
proximate string matching comes from low quality of text,
heterogeneousness of databases, spelling errors in the pattern
or text, searching for foreign names and searching with uncer-
tainty [13]. In some application we need to find fuzzy patterns
from a long string but the uncertainty is applied only to some
fixed positions in the pattern. Whereas the remaining posi-
tions in the pattern is fixed, that is it can have only fixed al-
phabet from Σ. For example if the pattern is ‘*AT’, where ‘*’
can be replaced with any alphabet in {B, C, E, F, H, M, R} to
form {BAT, CAT, EAT, FAT, HAT, MAT, RAT} and the second
and the third positions have the fixed alphabet ‘A’ and ‘T’ re-
spectively. The first position is not allowed to have any alpha-
bet other than from the set {B, C, E, F, H, M, R}. Finding all
the occurrences of pattern ‘*AT’ from a long string is therefore
an approximate pattern matching problem with position
based approximation. Here the approximation is applied only
to the first position, and the first position can have only an
alphabet from the set {B, C, E, F, H, M, R}. Remaining posi-
tions in the pattern is fixed. So this type of pattern matching
comes in between the fixed pattern matching and approximate
pattern matching. As per our knowledge there is no solution
addressing this specific type of fuzzy pattern matching prob-
lem.

2 SPECIFICATION OF POSITION BASED APPROXIMATION
Position specific approximation in the pattern can be specified

S

————————————————
• Anu Sebastian, Mar Athanasius College of Engineering, Kothamangalam,

India, anoos87@gmail.com
• Joby George, Mar Athanasius College of Engineering, Kothamangalam,

India, jobygeo@gmail.com

IJSER

http://www.ijser.org/

International Journal Of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 584
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

using a position based presence matrix. The position based
presence matrix is a |Σ| × l matrix. Where |Σ| is the number
of alphabet in the Σ and l is the length of the pattern. The posi-
tion based presence matrix for the pattern ‘*AT’ is shown in
the table 1. Here Σ contains the letters A through Z.

TABLE 1

POSITION BASED PRESESNCE MATRIX FOR THE PATTERN ‘*AT’

 * A T
A 0 1 0
B 1 0 0
C 1 0 0
D 0 0 0
E 1 0 0
F 1 0 0
G 0 0 0
H 1 0 0
I 0 0 0
J 0 0 0
K 0 0 0
L 0 0 0
M 1 0 0
N 0 0 0
O 0 0 0
P 0 0 0
Q 0 0 0
R 1 0 0
S 0 0 0
T 0 0 1
U 0 0 0
V 0 0 0
W 0 0 0
X 0 0 0
Y 0 0 0
Z 0 0 0

Here the entries corresponding to the column ‘*’ have non ze-
ro value when the alphabet is from the set {B, C, E, F, H, M, R}.
Similarly ‘A’ and ‘T’ have corresponding entry as 1 and rest of
them as 0.

 This type of pattern matching with uncertainty is applicable
in many areas. The matching algorithm is discussed from the
context of bioinformatics, but applicable to all fields. Finding
Transcription Factor Binding Site along the DNA is an applica-
tion of such type of fuzzy pattern matching. Transcription Fac-
tors (TFs) are proteins that does DNA regulation mechanism.
All living organisms are composed of cells. Cells of different
cell types may differ greatly in their morphology function ac-
cording to the tissue they form. For example, the axons of the
neuronal cells in human can be over one meter long, the ske-
letal muscle cell can span tens of mm, whereas the size of a
white blood cell is about 7μm in diameter. But the genetic in-
formation encoded in the nucleus of these cells is nearly iden-
tical. The differentiation of the cell is strongly controlled
through the regulation of gene expression. One such regula-
tion mechanism is done byTFs [2].

TFs bind to the DNA molecule to control the expression of
their target genes. One of the distinct characters of transcrip-
tion factors is that they have a DNA-binding domain that re-
cognizes a short specific DNA sequence. These short DNA
sequences are usually different for distinct transcription fac-
tors and are called transcription factor binding sites (TFBS) [3].
Every transcription factor is able to bind not only to a single
DNA sequence but to a variety of DNA sequences that share a
core structure [4]. It is represented by the binding motif. Table
2 shows bound sequences for a TF. In all those sequences the
core structure remains the same as ‘*AA*ATGGC*G*’.

TABLE 2
BOUND SEQUENCE

SITE SEQUENCE

1 CAAGATGGCGGC

2 GAAGATGGCGGC

3 GAAGATGGCGGT

4 CAAGATGGCTGT

5 CAAAATGGCCGC

6 AAAAATGGCGGC

7 CAAGATGGCCGC

8 AAAGATGGCTGC

9 CAAAATGGCTGC

10 CAAGATGGCCGT

 Recognizing potential TFBS along DNA is finding the loca-
tions in DNA that satisfies the binding motif. The binding
motif is an approximate pattern that allows variation in par-
ticular positions. A pattern matching algorithm that can ac-
commodate position based variation is essential to find the
potential TFBS. In case of TFs the variation is specified using a
Position-Specific Frequency Matrix (PSFM) like the position
based presence matrix introduced earlier. Fuzzy pattern
matching algorithms like Tarhio and Ukknen [5] allows k-
mismatches in the pattern. But this mismatches can be any-
where in the pattern. Whereas TFBS share a core structure in
which the pattern remains constant in some positions and it
can vary in other positions. So an algorithm that allows varia-
tions in specified positions can be used locate the potential
TFBS along the DNA. The paper proposes an algorithm based
on the Boyer-Moore technique [6] to allow position based var-
iation in the pattern. The same method can be used along with
the KMP (Knuth–Morris–Pratt) string matching algorithm to
find all the occurrences of the position based vague pattern

IJSER

http://www.ijser.org/

International Journal Of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 585
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

from a long text in polynomial time [14].

3 TRANSCRIPTION FACTORS AND THEIR BINDING
AFFINITY

Binding of transcription factors to the DNA is to some extent
stochastic and depends on the biophysical properties of the
DNA sequence [7]. The binding sites for a transcription factor
share a common core structure. These patterns of transcription
factor binding site for a single factor can be represented with a
Position-Specific Frequency Matrix (PSFM). PSFM has row
entries for each symbol of the DNA alphabet (nucleotides
A=adenine, C=cytosine, G=guanine and T=thymine) and col-
umn entries for each position in the pattern. That is Position-
Specific Frequency Matrix is a 4×l matrix where l is the length
of the transcription factor. The cell entries of a PSFM are calcu-
lated as relative frequencies of each nucleotide at each position
in the pattern.

Visual representation of this is done using a sequence logo.
In such a graphic, a sequence logo shows stacked nucleotide
symbols of heights proportional to their information content at
the respective position. The higher the preference of a nucleo-
tide is in the PSFM at a given position, the higher is the proba-
bility of corresponding letter at that position in the sequence
logo [8]. The PSFMs, and the DNA-bindings sequences are
stored in several databases such as TRANSFAC [9], JASPAR
[10] and UniProbe [11]. Figure 1 shows the sequence logo for
the transcription factor NFIC::TLX1 (id- MA0119.1) from the
JASPAR database. The Position Frequency Matrix for the same
is given in the figure 2.

 The sequence logo represents the binding motif for the
transcription factor which is an approximate pattern. From the

sequence logo or from the PFM it is clear that the vague pat-
tern is ‘TGGC*****GCCA*’, where the’*’ in the 5th position can
have {A, C, T} not G. 6th position can have any nucleotide {A,
C, G, T}. Last position (14th) can have any nucleotide from {A,
G, T} not C similarly in all the positions. Height of the letter in
a position or the value in the PFM represents the probability of
occurrence of that nucleotide in the corresponding position.

4 POSITION BASED APPROXIMATE PATTERN MATCHING
String matching is a vital problem. It is highly recom-

mended to have fastest algorithms in different application.
Boyer–Moore algorithm is one of the efficient algorithms for
exact pattern matching [6]. It is considered as the standard
benchmark for pattern matching algorithms. Boyer-Moore
algorithm aligns P (pattern) with the T (text) successively, then
checks whether P matches the opposite characters in T. When
the scanning phase is complete, P is shifted to right relative to
the text T. Boyer – Moore algorithm contains three clever
ideas:

• The right to left scan
• The bad character rule
• Good suffix rule

We modified the Boyer–Moore algorithm to allow position
specific variation in the pattern to find out the Transcription
Factor Binding Site based on the Position Frequency Matrix.
Using position based presence matrix the vague pattern from
the text can be found out in any other applications.

4.1 Bad character rule modified
The pattern P and the text T are matched from right to left.
The bad-character rule considers the alphabet in T at which
the mismatch occurred. Then the next occurrence of that al-
phabet to the left in P is found out, and a move which takes
that occurrence in line with the mismatched occurrence in T is
made. If the mismatched alphabet does not occur to the left in
P, entire P is shifted past the point of mismatch. The following
example clarifies the statement.
 0 1 2
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

T: T T A A T A A T G A G C C T A TA G C A A C G T

P: C A T G C C A T

 C A T G C C A T

The Boyer–Moore algorithm scans from the right end. The
mismatch occur at the 3rd position from right of the pattern
(in the 6th position of the pattern) and a shift of distance 4 is
made based on the Bad character rule. Since the mismatched
character in the text (T) is ‘A’ and ‘A’ occur in the 2nd position
of the pattern (P). In our work in order to accommodate posi-
tion based variation in the bad character rule, the Position
Frequency Matrix (PFM) is incorporated in the preprocessing
of the bad character rule.

A 2D table is constructed which is indexed first by the in-
dex of the alphabets in DNA (A, C, G, T) and second by the
index i in the Transcription Factor Binding Motif (pattern).
Table is made with entries as the shift distance. 2D table for
the TF NFIC::TLXI (Fig1) based on the PFM (Fig2) is given in

Fig. 1. Sequence logo for TF NFIC::TLX1

Fig. 1. PFM for TF NFIC::TLX1

IJSER

http://www.ijser.org/

International Journal Of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 586
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

the table3. Where shift distance is the i-j (j<i), where j is the
highest index of the occurrence of the corresponding DNA
alphabet based on the PFM (ie, highest index where the en-
try>0 for that alphabet in PFM). For example the entry for T×4
is 3 because from the 4th position in the pattern, a shift dis-
tance of 3 to left side is needed to reach position with non-zero
entry for T in PFM.

TABLE 3
BAD CHARACTER RULE PRE PROCESSING FOR TF NFIC::TLXI

1

2

3

4

5

6

7

8

9

10

11

12

13

14

POS

T

G

G

C

*

*

*

*

*

G

C

C

A

*

A

1

2

3

4

5

1

1

1

1

1

2

3

4

1

C

1

2

3

4

1

1

1

1

1

1

2

1

1

2

G

1

2

1

1

2

3

1

1

1

1

1

2

3

4

T

1

1

2

3

4

1

1

1

1

1

2

3

4
5

While performing the matching, bad character rule uses the

entry in the table as the shift distance.

4.2 Good Suffix rule modified
The good suffix rule is: For a given alignment of P and T; if a
substring s of T matches a suffix of P, but a mismatch arises at
the subsequent comparison to the left. Then find, if there ex-
ists, the right-most copy s' of s in P such that s' is not a suffix
of P and the character to the left of s' in P differs from the cha-
racter to the left of s in P. Shift P to the right so that substring
s' in P aligns with substring s in T. If s' does not exist, then
shift the left end of P past the left end of s in T by the least
amount so that a prefix of the shifted pattern matches a suffix
of s in T. If no such shift is possible, then shift P by n places to
the right [6]. Following example depicts the rule. Consider the
alignment of P and T given below.

 0 1
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
T: P I T X B L C A B V I X A S T
 *
 P: Q P A B F L A B
 1 2 3 4 5 6 7 8

When the mismatch occurs at position 6 of P and position 7

of T, s = AB and s’ occurs in P starting at position 3. Hence P is
shifted right by four places resulting in the following align-
ment.

 0 1
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

T: P I T X B L C A B V I X A S T
P: Q P A B F L A B

The good suffix rule is also modified to accommodate the
variation that can happen in the pattern based on the PFM. In
the pattern (Transcription Factor Binding Motif) the positions
that may vary are represented with a symbol. For example the
binding motif for TF NFIC::TLXI (fig1&2) is represented with
‘TGGC*****GCCA*’. While checking for the suffix in the pat-
tern ‘*’ is considered as equal to every alphabet (A, T, C, G)
and suffixes are checked and shift distance is calculated. In the
above motif ** is considered as equal to A* and C** is consi-
dered as equal to CA*. And the shift distance is calculated on
the basis of that.

Shift distance table for the good suffix rule of the pattern
‘TGGC*****GCCA*’ is given in the table 4

TABLE 4
GOOD SUFFIX RULE PRE PROCESSING FOR TF NFIC::TLXI

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T G G C * * * * * G C C A *

14 14 14 14 4 4 4 4 4 4 4 4 4 1

 The value for the column 13 is 4 because the suffix pattern
‘A*’ is at a shift distance of 4 to left of the pattern because we
consider ‘A*’ and ‘*G’ as equal and ‘*G’ is at position 9 and 10.

4.3 Algorithm
The idea of the Boyer–Moore algorithm is to call good suffix
rule and bad character rule on mismatch. Both will return the
shift distance and make the larger shift among that. Below
shows the skeleton of the modified algorithm to match the
position based vague pattern.

• Match the pattern (P-TF Binding motif) from right to
left against the Text (T- DNA sequence).

• If mismatch occurs Check PFM for that position

o If value of mismatched alphabet in PFM>0

 Consider it as a match and continue

o Else

 call(bad character rule && good suf-
fix rule)

 Make the larger shift

• End

 The good suffix rule and bad character rule is modified as
mentioned earlier to accommodate uncertainty in the pattern.
The proposed algorithm works correctly for pattern matches

IJSER

http://www.ijser.org/

International Journal Of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 587
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

where position specific variation in the pattern is present. The
algorithm scan the PFM only when the mismatch occurs and
PFM look up takes only a constant time. So in overall it takes
only a polynomial time complexity like the Boyer-Moore algo-
rithm for pattern match.

5 RESULT
We implemented the proposed algorithm in java to find potential
binding sites for the TF. A short synthetic DNA sequence and
PFM for the TF was given as the input.
DNA-Sequence:
TCAAGGCACGTAGCTTAGCTATACGTAGCTTGACGACTGAT-
TAGCGCTATGCTATGCTAGTTGATGATCCAGGTTCTCTCGAGAGATC-
GATGCTAGCCTGCTATATAGAGAGACACCCCCAGAGATCGTATAGCCTCTA-
GAGCTAGCTGCGCTAGCGACGAGAGAGAGAGAGAGTATATAGACA-
GACTGCTGCATATGTACGATAGAAATGATTAGATTCAGTAAGAAC-
TAGGTCAAGGCCTGATCGCTATAGATACATAGCTCGGTGCGA-
TACGTCGTGACGCTGGCAT-
GACTCGTACGTCGCGACGTCTTGTCGTCGTCGCTCGTCACA-
TAGCTGTACCGTTCAAGTCGTGTCACATGCTGCTGCAAAAAAATGCACG-
TACCCCGTGTCGTCGCTGGATATATATAGCTCGGCGCCA-
CATGCTGCCATGCCACACAGTCACACA-
CACGTCGCTCGCAGTCGCAGTCGTTCTCGACACA-
TACGTCGCTGACGTCGCAGTCGCACATA-
TAGCGCTCGTCGCCTGGTGTCTCTCGGTGTGTGTGGAGACATACCTGAC-
TACGTACGATACTAGATGCTCCTTCTCTGATGACGATGCAGACTCGTAGATT-
CAATAACAGTACGTCGCTTACAGTCGCACTCGCTGCAGATCGTCA-
GACTCGTAGATTCGGTAACTATCTGTAGTAGTGTATAGAGAGAGA-
GACCCCCCCCCCCCCTTCTAGGCTTTAAAAAGTGTGTGTGTTT.

TABLE 5
INPUT PFM

A 0 0 0 1 1 0 0 0
C 0 0 1 0 0 0 0 1

G 1 0 0 0 0 1 1 0
T 1 1 0 1 0 0 1 0

The fuzzy pattern specified by the PFM is ‘*TC*AG*C’. Imple-
mented program returned the following result (Table 5).

TABLE 6

INPUT PFM

Pattern Index
GTCAAGGC 238
TTCAAGTC 350
TTCTAGGC 726

The output is found to be 100% accurate.

6 CONCLUSION
A fast pattern searching algorithm that allows position based
variation in the pattern is proposed. This algorithm can be
effectively used for locating the potential Transcription Factor
binding sites along the DNA. Similarly the proposed algo-
rithm can be used for any application that allow position
based variation in the pattern. The uncertainty along the posi-
tion can be specified using a position based presence matrix
like Position Frequency Matrix in the case of TFs. The search
procedure can be coupled with any simple scoring function to
effectively return the top N results, when the probability of
occurring different symbols from Σ is different in the uncer-
tain positions. The same technique can also be used along with
Knuth Morris Pratt (KMP) algorithm for fixed pattern match-
ing to match position based approximate patterns.

REFERENCES
[1] Thomas H Corman, Charles E. Leiserson, Ronald L. Rivest & Clifford

Stein “Introduction to AlgorithmsString matching”, EEE Edition, 2nd
Edition, Page no 906-907.

[2] A. Coller and L. Kruglyak. It’s the sequence, stupid! Science,
322(5900):380–381, 2008.

[3] J. Galas and A. Schmitz. DNAase footprinting a simple method for
the detection of protein-DNA binding specificity. Nucleic Acids
Research, 5(9):3157–3170, 1978..

[4] G. Berg and P. H. von Hippel. Selection of DNA binding sites by
regulatory proteins. Journal of Molecular Biology, 193(4):723–743,
1987.

[5] Tarhio, J., Ukkonen, E. (1993) Approximate Boyer-Moore String
Matching. SIAM J. Comput., 22, pp. 243-260.

[6] Boyer, R.S., Moore, J.S. (1977) A fast string searching algorithm.
Communications of the ACM, 10(20), pp. 762-772.

[7] G. Roider, A. Kanhere, T. Manke, and M. Vingron. Predicting
transcription factor affinities to DNA from a biophysical model.
Bioinformatics, 23:134–141, 2007..

[8] D. Schneider and M. Stephens. Sequence logos: a new way to display
consensus sequences. Nucleic Acids Research, 18(20):6097–6100,
1990.

[9] Matys, O. V. Kel-Margoulis, E. Fricke, I. Liebich, S. Land, A. Barre-
Dirrie, I. Reuter, D. Chekmenev, M. Krull, K. Hornischer, N. Voss, P.
Stegmaier, B. Lewicki-Potapov, H. Saxel, A. E. Kel, and E.
Wingender. TRANSFAC and its module TRANSCompel:
transcriptional gene regulation in eukaryotes. Nucleic acids research,
34(Database issue):D108–D110, 2006.

[10] Mathelier, X. Zhao, A. W. Zhang, F. Parcy, R. Worsley-Hunt, D. J.
Arenillas, S. Buchman, C.-y. Y. Chen, A. Chou, H. Ienasescu, J. Lim,
C. Shyr, G. Tan, M. Zhou, B. Lenhard, A. Sandelin, and W. W.
Wasserman. JASPAR 2014: an extensively expanded and updated
open-access database of transcription factor binding profiles. Nucleic
acids research, 42(Database issue):gkt997–D147, 2014.

[11] E. Newburger and M. L. Bulyk. UniPROBE: an online database of
protein binding microarray data on protein-DNA interactions.
Nucleic acids research, 37(Database issue):D77–D82, 2009.

[12] M. Young, The Technical Writer’s Handbook. Mill Valley, CA:
University Science, 1989.

[13] Ricardo Baeza-Yates, Gonzalo Novarro, “Fast
Approximate string matching in a Dictionary”,Bulletin of the
Technical Committee, 2000

[14] Knuth, Donald; Morris, James H.; Pratt, Vaughan (1977). "Fast pattern
matching in strings". SIAM Journal on Computing 6 (2): 323–350.
doi:10.1137/0206024.

IJSER

http://www.ijser.org/
http://epubs.siam.org/doi/abs/10.1137/0206024
http://epubs.siam.org/doi/abs/10.1137/0206024
http://epubs.siam.org/doi/abs/10.1137/0206024
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1137%2F0206024

	1 Introduction
	2 Specification of Position Based Approximation
	3 Transcription Factors and Their Binding Affinity
	4 Position based Approximate Pattern Matching
	4.1 Bad character rule modified
	4.2 Good Suffix rule modified
	4.3 Algorithm

	5 Result
	6 Conclusion
	References

